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Abstract tory of CFD to overcome grid-alignment features of the
Split numerical methods have been commonly used irj&echniques for simulating shock and flow phenomena.
This multidimensional simulation issue has been ren-

computational physics for many years due to their e . . :

speed, simplicity, and the accessibility of shock captur-f[j.ered more d':'cu“tby thel use of or:tg(;Q|men§|on?l ?Ip“t'

ing methods in one-dimension. For a variety of reason ung approaches fo solving muftidimensional Tow
quations such as the Euler equations. In addition to

it has been challenging to determine just how accurate™ “" . . . .
operator split methods are, especially in the presence (grld-gllgnme_:nt pro_blgms n flow S|mqlat|on, other seri-
curved wave features. One of these difficulties has beefYS 'SSU€S 1N multidimensional flow'mclude accuratgly
the lack of multidimensional shock capturing methods..reprpducmg th.e curvature of shqgks in the flow anc! min-
Another is the difficulty of mathematical analysis of dis- IMmizing reflgctlons of waves exm_ng the computatlongl
continuous flow phenomena. Also, computational stud-domaln obliquely a.t an absorbmg boundary. In thls
ies have been limited due to a lack of multidimensionalP2P€": the focus will be on the issue of propagating
model problems with analytic solutions that probe thecurved shocks.

nonlinear features of the flow equations. However, aMultidimensional upwind schemes and unsplit adjust-
new genuinely unsplit numerical method has beerments to dimensionally split shock capturing methods
invented. With the advent of the Space-Time Conservasuch as most Godunov-based approaches have had some
tion Element/Solution Element (CE/SE) method, it hassyccess in dealing with grid-alignment iss@es.°With
become possible to attain high accuracy in multidimen-some one-dimensional shock-capturing methods, it has
sional flows, even in the presence of curved shockspeen argued that it is possible to perform fixups to the

Examples presented here provide some new evidence @fansverse component of the flow by estimating the error

the errors committed in the_ us? of op?rator sp_ht tEmh'incurred with the operator splittinrg.7 However, they
nigues, even those employing “unsplit” corrections. In

. _~ " _have only moderate success in accurately representing
these problems, the CE/SE method is able to malnta"&urved shocks. Here, we intend to illustrate the magni-

the original cylindrical symmetry of the problem and tude of this problem, and to visibly demonstrate that at

tra<_:k the main feature_s Of. the flow, while the Operaton . st one unigue method does not suffer this deficiency.
split methods fail to maintain symmetry and position the.l_hiS method is the Space-Time Conservation Element

shocks incorrectly, particularly near the focal point of .
the incoming waves. and Solution Element (CE/SE) method due to Chhng.
Among its many strengths is that it is genuinely unsplit

. from the start. It is highly accurate in 2D and 3D, as well
Intr oduction as 1D

Numerous attempts have been made over the long h"cih addition to the CE/SE method there is at least one
other means to obtain genuinely unsplit methods. It is

the Riemann Invariant Manifold thedgrywhich can be
used with a variety of one-dimensional methods. This

This material is a declared work of the U.S. GovernmentaPproach will not be considered further here.

and is not subject to copyright protection in the United some of the unique aspects of the CE/SE method are:
States. first, it is genuinely unsplit (directionally unsplit); sec-
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ond, it conserves space-time flux both locally and glo-indices specify the center point of the solution element
bally; third, neither interpolation nor extrapolation is that is the domain of validity for equation 1.

required for flux evaluation; and fourth, through the As shown in Figure 1, typically two solution elements

zddltlon of bant fadjuts table hd'slf'pal\tl'otn’blthehmithOdare involved in the integration of a conservation law
ecomes robust for strong shocks. INotably, ShOCK Cabg e 4 CE. The expansion points for the Taylor series in

ture is achieved without_a characteristic decompositiorbach solution element are denoted by the bullet symbol.
or the need to solve a Riemann problem. One of these solution elements involves known quanti-
In the next section, we sketch the essentials of the CEiies from the past time level. The other solution element
SE method, including the generalization of Chang’s fluxis that for the unknown advanced-time values of the

limiter? to a 2D rectangular grid. Following that, some Coefficients in the corresponding Taylor series.
details are given of how the CE/SE method is applied t
the two-dimensional Euler equations. Two test problems
representing convergent and divergent 2D shocks are
then described, the results obtained for these problen
with the CE/SE method and two variants of dimension-
ally-split Godunov are compared. Finally, we conclude
by noting where these results will be important.

(Xi-ijtn)

(7]

The CE/SE Method

Chang and his coworkers have shown that the propaga-
tion of signals in hyperbolic conservation laws implies
that it is beneficial to formulate the solution process as

leapfrog method. It is easy to select conservation ele-
ments to allow a leapfrog update. Each conservation elg-
ment (CE) is a region in space-time over which the ‘Ax. DAy .0 At y
integral form of each conservation law is valid. Conser- X5 _7't _E)

vation elements are chosen to fill in the space-time pro X

lem domain. While many choices are possible, w

choose rectangular brick volumes in space-time for th

conservation elements in the simulation code used herg. Figure 1. A typical conservation element with twg

Next, the solution elements (SE) are selected as th 'I_'aylor series expansion points associated with soju-
domains over which values of the dependent variablep tion elements_that cover the surfaces and volume|of
are needed in integrals arising from the integral form of the conservation element.
the conservation laws. In these domains a convenient
representation for the dependent variables is selected.

Usually, this is a Taylor ser_ies_ representa_ltion that is In the Taylor series expansior\%gtr is determined
expanded about a center point in the solution element. th,

For instance, in two dimensions on a rectangular gridirom the partial differential equation f@. The remain-
that lines up with the coordinate axes, we pick the fol- 2

lowing representation for a dependent variaple ing fourunknownsgi"j ggg{ gg%j 1an%%|]
' X4, ] YH, j X0y |

n _ on oL @gd n are found by solving the four equations obtained by
9% ¥ L% Y} ) = gy + m*tqj(t_t ) @) integrating the conservation law fgrover the four indi-
vidual conservation elements surrounding the update

+ %HTJ(X—&) + %gj(y_yj) point (x;, y;,t") . Figure 2 shows the four conservation
2 N elements that surround a given update point in a uniform
9 H lar Cartesi dinate system. The CE
ME T el (x=%)(y-¥;) rectangular Cartesian coordinate system. e
YO, labelled 1 is the same CE illustrated in Figure 1. This

Note that ‘n’ denotes a time level, ‘i’ denotes an index in Sketch also makes it a little clearer how one leapfrog
thex direction, and j’ an index in thg direction. These time step works. It also motivates the fact that when the
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integrals for two adjacent CEs are added together, the yon_diss
contribution on the common face is zero. 9y = Ix

, ®3)

Note that no dissipation is involved in obtaining these
coefficients in the Taylor series. Of course, in order to. ) ] ol )
prevent ringing at shock fronts, dissipation must belS the solution obtained fo D, when solving the
added to the non-dissipative solution. Originally, Changg,r equations obtained from integrating over the CEs |,
used a two parameter dissipation model for dampinqL IIl, and IV in Figure 2.

this ringing. By treating the CE of dissipation model as

the union of the CEs surrounding an update pointin order to computey, and, , it is first necessary to

(%, yj,t"), a method for conservatively modifying the obtain some advanced-time estimates from the previous

refined this technique with a three parameter dissipatiofSed:

model3 1 nol
n-3 2
n ~q 2 ,Otogn
t ( ) gi:%, ji% gi*_r%, ]i% T2 WD% Ji%' “)
X ¥
y g, is found from these values as follows:
X
Egn . E Egn . E
1 9 1. - 1 9 1.
o Oi+giey T+gi-g0 Oi-3i+g i-3i-30 :
O = 20X ©)
Coupling g" 1 .1 Wwith the known value at the update
Iii,jié
A A At Ax, LAy o At oint, g . , four planes can be constructed, one in each
(Xi_jxvyj_%’tn_j) (x + >t St 2) p i, p

of the tx andty directions. For th&isuch plane, the

: andy derivatives ofg can be computed. Then, @fx(i)
(X,+&(y._ﬂ tn_g) .
T2t T2 andg,” are the derivatives on teplane, define

Figure 2. A typical arrangement of conservatign o _ /(g (i))2+(g (i))2_ (6)
elements surrounding an update point in leapfrpg X y

position. The solution element Taylor series expgn- With this quantity, the nonlinear weighted averageypf
sion point at the old time level (n-1/2) for CE 1V is

- can be defined as:
not visible.

gy = [(8,038,) g + (8,0,8,) g + (7)
3
(8,6,8,)" 0% +(8,6,8,)" 071/ [(8,840,)" +(6,648,)" +

0,6,)" +(6,6,85)°]

The basic idea behind this new dissipation model is to
separately damp weak waves and strong shocks. This i$1
indicated in equation 2, where is the parameter forW

) _ ith o usually chosen to be 1.0 or Z.Q)‘C’ is computed
damping weak waves angl  is the parameter for damp- o L
analogously. This limiter is the generalization for a rect-

ing shocks. angular grid of Chang’s two-dimensional limiter on a
gliss = gnomdsSy 9g (g — M"Y 4+ B(g - ¢f), (2)  regular triangular grid.

where gf( is a central difference approximationdp It is also important to note thzgf;V is computed in a way

w ) ) ~ that introduces no directional bias. This generalized

g is a nonlinear weighted average of one-sidedmyitidimensional limiter preserves the genuinely unsplit

approximations tg, , and nature of the CE/SE method. Thus, unlike techniques
based upon Godunov or Riemann solvers, there are no
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fixups or adjustments required to accommodate cou- Ay
i . . . Yi+ts Py
pling between different directions. J’ ——5
Yi t”—% p

It is most common to use an artificial viscosity as a way

- prp pya Edydt (10)
i+1/2 it

of adding dissipation to a physical model. Since an arti- x 2
ficial viscosity is added to the physical pressure, it is ‘ 7J—‘n + p_XE
therefore the case that linear changes in the artificial vis- 7% t

cosity introduce nonlinear changes in the solution. By

contrast, the CE/SE dissipation model introducesNow define the two flux terms in equation 8 as:
changes in the derivative coefficients that are linear in N N ”n

the amount of dissipation added. Furthermore, the dissi- _n _ (Px); j(Py); ; G = pn L (P (12)
pation is added only after the non-dissipative solutionis ~ "1 on VY n
computed. Chang found that the addition of this dissipa- b b

tion breaks the space-time invariance properties that &he Taylor series forpy can be used to evaluate the

non-dissipative CE/SE method possesses. integrals in expression 9. In order to obtain comparable

The overall result is that the CE/SE model provides bet/esults in the integrals in expressions 10 and 11, one
ter control of the dissipation than methods that introducechoice is to linearize the flux terms as in equations 13
dissipation inside of a nonlinear operator. The CE/sgand 14.

dissipation model also yields more readily to mathemat-

o P

20
a
_EP+&<§ Hixdt  (11)
j+1/2 g

ical analysis. F(y, ti, j,n) = F{ | (13)
: _ OFd ¢y . OFC

Applying CE/SE to the 2D Euler Equations ~ * Gt ;=) * gy V=%

For the two dimensional Euler equations in Cartesian N

coordinates, we solve the equations in internal energye(x t i, j,n) = G; ; (14)

form. That is, the dependent variables are chosen to be+ G T (ot 96T (Xx)

(p. PV, PV &) . We choose to denote thxeandy com- ot O Bx0, 5

ponents of the momentum by, andy ; that is, OF OQG

b = pv, andp, = pv, respectively. Also, the symbol In evaluatmga ands the time derivatives of the

P denotes the pressure, and should not be confused with n

the momentum components. dependent variables are encountered. Ju%@% in
J

We illustrate the application of the CE/SE method to thisthe Taylor series fopy is replaced by its value from the

situation by examining the conservation law fgy . The gifferential equation that defines it, each time derivative
first step is to write the integral form of the conservation. 3¢ 4% | laced b th ding diff
law for p, beginning with equation 8: in 5; andz." is replaced by the corresponding differen-

tial equation definition. This process is repeated for the

X+ yj+7r [@p, @®) conservation integrals over GECE,, and Ck,.
Ixi Iyi ”—921 t Thereby, we obtain four equations to solve (q!ry):j ,
2
+§5Pxpyg+ai53+ &Hlfdxdydt =0 Py 9Py q I]‘)Zpy O B h id i
X n . rid i
p yo Pmm Bx 0, quj,a %Hj ecause the g S

Because of the use of conservation form, the three termsniform in this case, if the results of integrating over the
can be integrated once as shown in expressions 9, 1@pur CEs are added together, we obtain an expression
and 11. Note that the term in each equation that is not aghat depends only upop, , and not any of its deriva-

the update point uses old time level datat(at t" _% ).tives. Consequently, the dependent variables can be par-
tially updated on this grid without the need for solving a

Ax Ay ; _1 it i
X+ y = 12 system of equations. When= = , itis not necessary to
[ 2, 2 ()" =(py)" ™ Pybedly ©) T .
% Y solve for the non-dissipative derivative coefficients.
However, this is a large amount of dissipation; so, for
4
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higher accuracy, it is recommended to solve three of themprinting occurs due to the initial conditions. Nonethe-

p, equations for the derivative coefficients. When inte-less, as will be seen from the CE/SE solutions, these

grating internal energy equation over a CE, nonlinearS"Ors are small.

terms are found due to the cross derivatives of kineticThe first Godunov solver used in these simulations is

energy terms. Hence, in this case, a nonlinear solver ig55¢ upon the Direct Eulerian MUSCL schehi.

required to solve the full system of equations. Happily,emp|oys a standard ADI-type approach for solving the
the nonlinearity is weak, so functional iteration works . itidimensional Euler equations; that is, after solving a
well given a good starting guess. sequence of Riemann problems in one direction, it per-
Itis of interest to compare actual implementations of theforms transverse fixups in the directions normal to the

CE/SE method and a Godunov method. Our CE/SEsweep. In order to remove some bias, the order of direc-
tional sweeps is reversed from one-half time step to the

: : , o1
implementation on rectangular grids with= 2 and oyt This solver will be identified as the MUSCL solver

B = 1 is faster per major time step (two leapfrog steps!n the following discussion.
in a major time step) than the Godunov solver. Also, weThe second Godunov solver employed is the CLAW-

observed that the CE/SE implementation is able to gepack package as embedded in AMRCLAWE is a
reliable solutions at larger time steps than the Godunoyyaye propagation method with an ‘unsplit’ character in

method. These observations have been made in a framgse sense that it approximates the terms that are missing
work where both the CE/SE method and a Godunovp the operator splitting of the full (nonlinear) Euler

method are implemented in the same simulation codegquations.

and in a way so that both use exactly the same underly- ) ) )

ing simulation code services (such as initialization, | "€ CE/SE solver used in the simulations used the fol-
memory management, graphics, etc.). Consequently, tH@Wing parameter values for the dissipation model:
algorithms themselves can be directly compared for€ = 0-25 and = 0.12, witha = 1.0 in the first prob-
speed, accuracy, code size, etc. Since the CE/SE methdem anda = 2.0 in the second problem. It also speci-
involves solving for the flow variables and their gradi- fied six digits of accuracy in the nonlinear solver.

ents, it is not obvious how this can be made to be more, regions in these problems are made upyof -law
efficient than an optimized Godunov solver. This

achievement was made possible through the use ajases withy = 2

advanced symbolic computing tools for the bulk of the 3

coding, very sophisticated optimization, and clever
adjustments to the multidimensional limiters.

When reducing the amount of dissipation used by CE
SE, a nonlinear solver is required, and the CE/SH
method then slows down to about half the speed of the
Godunov solver. Considering the gains in accuracy.
especially for curved features, this is an easily justified
cost.

Test Problems

We illustrate curved shock issues with converging cylin-
drical shocks. In order to elucidate the problems thaf
arise due to split versus unsplit methods, we pick mode
problems in cylindrical coordinates that depend only
upon the radial coordinate. The simulation is then per-
formed on a uniform two-dimensional rectangular Car-
tesian grid that lies in thep(®) cylindrical coordinate
plane. The size of the grid is 128 by 128.

PT(3,

Figure 3. Initial conditions for the three region
problem. The inner very low density region has
a low pressure; the low density outer region has

a high pressure; and the high density middle
In the two problems considered here, the initial condi-|  region has an intermediate pressure.

tions include features that do not conform to the geome
try of the grid. Hence, stairstepping errors or mesh
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Figure 4. Problem 1 just before a major shqck Figure 5. Problem 1 after the shocks have
reaches the origin. The top plot shows the CLAW- rebounded. The top plot shows the CLAWPACK

PACK result; the middle plot shows the correspopd- result; the middle plot shows the correspondjng
ing MUSCL result; and the bottom plot shows the MUSCL result; and the bottom plot shows the QE/
CE/SE result using = 1.0 . SE result usingt = 1.0 .

The first problem is a three region problem where thethe plqt, the MUSCL_resuIt IS shOW|_ng subtle hints (.)f
inner region is very low density, low pressure, the mid_flattemng in the SO'“"OF‘ along the d'agonf%' of the g.”d
dle region is higher density and medium pressure, while(Where x=y, x andy being the tW.O Cartesian co_ordl_-
the outer region is low density and high pressure. Eacﬁ]ates))' In the CLAWPACK sc_)lutlon, the flatte_:nmg IS
region is bounded by cylindrical surfaces. The initial very pro_nounce_d. A short Wh'.le gﬂer the main thOCk
density contours are shown in Figure 3. bounce is seen in Flg_ure 5A S|gn|f|can_t (_jeterloratlon of
both Godunov solutions near the origin has clearly
Note from the Godunov solutions in Figure 4 that just occurred. In fact, in addition to flattening of the shocks,
before the main shock reaches the lower left corner Othere appears to be jetting Occurring on the coordinate
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10000,

Figure 6. Initial conditions for the two region
problem. The inner low density region has a
low pressure, and the medium density outer
region has an intermediate pressure.

axes near the origin. In the CE/SE solution, there is
slight squaring of the contours out a short distance from
the origin. Also, a minor manifestation of the mesh
imprinting of the initial conditions is visible. But over-
all, the CE/SE solution is excellent.

The second problem is a two region problem where the
inner region is a low density, low pressure gas, and thd
outer region is a medium density and medium pressure¢
gas. Once again, the regions are bounded by a cylindrit
cal surface.Contours of this setup are shown in Figure 6

From Figure 7, just before the main shock reaches thd
lower left corner of the plot, slight hints of flattening

. , . =
appear in the Godunov solutions along the diagonal of
the grid occurs. The effect is not as strong as in the firsf
problem. However, color contour plots definitely reveal
the effect. For the CE/SE method, mesh imprinting may
have caused one contour to be slightly flattened. In thig
case, color contour plots only show a slight asymmetry
in the solution.

Figure 7. Problem 2 just before the main shgck
reaches the origin. The top plot shows the CLAW-
PACK result; the middle plot shows the correspopd-
ing MUSCL result; and the bottom plot shows the
CE/SE result using = 2.0
A short while after the main shock bounce, the Godunoyv
solutions in Figure 8 both show significant deteriorationthe simulation matches the shape of the shacks. It is also
near the origin. In this. case, Jetting occurs on the Coordi'clear that very serious errors can arise due to the use of
nate axes near .the origin, although not as pronounced Wmensional splitting in solvers of nonlinear equations.
n the three region prqblem. As before, t.he CE/SE SOIU'From our experience, the evidence points to the dimen-
tion appears to be cylindrically symmetric. sional splitting errors becoming visible when the curva-
These results establish beyond a doubt that the gendure of a shock becomes large in a single zone of the
inely unsplit CE/SE technique is quite powerful. Using agrid.

square Cartesian grid, curved shocks are propagated

almost without distortion across a grid that at no pointin
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and points clearly to its potential in more demanding
flow problems.
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